

Interoperability Specification for ICCs
and Personal Computer Systems

Part 5. ICC Resource Manager Definition
Bull CP8, a Bull Company

Gemplus SA

Hewlett-Packard Company

IBM Corporation

Microsoft Corporation

Schlumberger SA

Siemens Nixdorf Informationssysteme AG

Sun Microsystems Inc.

Toshiba Corporation

VeriFone Inc.

Revision 1.0
December 1997

Copyright © 1996, 1997, Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger,

Siemens Nixdorf, Sun Microsystems, Toshiba and VeriFone..
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.
BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT, SCHLUMBERGER,
SIEMENS NIXDORF, SUN MICROSYSTEMS, TOSHIBA AND VERIFONE DISCLAIM ALL LIABILITY,
INCLUDING LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO
IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. BULL CP8, GEMPLUS, HEWLETT-
PACKARD, IBM, MICROSOFT, SCHLUMBERGER, SIEMENS NIXDORF, SUN MICROSYSTEMS,
TOSHIBA AND VERIFONE DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S)
WILL NOT INFRINGE SUCH RIGHTS.

Windows and Windows NT are trademarks and Microsoft and Win32 are registered trademarks of Microsoft
Corporation. PS/2 is a registered trademark of IBM Corporation. JAVA is a registered trademark of Sun Microsystems,
Inc. All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page i

Contents

1. SYSTEM ARCHITECTURE 1

2. THEORY OF OPERATION 2

2.1 Functional Overview 2

2.2 Implementation Considerations 2

2.3 User Interface Elements 3

2.4 Installation and Configuration 3

2.5 Runtime Considerations 4

3. FUNCTIONAL DESCRIPTION 6

3.1 Syntax 6
3.1.1 Data Types 6
3.1.2 Calling Conventions 8
3.1.3 Defined Constants 8
3.1.4 Response Codes 10

3.2 Required Services 12
3.2.1 Class RESOURCEMANAGER 12

3.2.1.1 Properties 12
3.2.1.2 Methods 12

3.2.2 Class RESOURCEDB 14
3.2.2.1 Properties 14
3.2.2.2 Methods 14

3.2.3 Class RESOURCEQUERY 17
3.2.3.1 Properties 17
3.2.3.2 Methods 17

3.2.4 Class SCARDTRACK 19
3.2.4.1 Properties 20
3.2.4.2 Methods 20

3.2.5 Class SCARDCOMM 22
3.2.5.1 Properties 22
3.2.5.2 Methods 22

APPENDIX A. REFERENCE IMPLEMENTATION FOR MICROSOFT
WINDOWS 27

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 1

1. System Architecture

The general architecture defined by this specification is described in detail in Part 1 and is
summarized below. This Part deals with one specific element of this architecture, the ICC
Resource Manager, indicated by the shaded area of the figure.

ICC

 IFD

ICC ICC

 IFD IFD

ICC Resource Manager

ICC Aware Applications

 IFD
Handler

 IFD
Handler

 IFD
Handler

Service Provider

Figure 1-1. General Architecture

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 2

2. Theory of Operation

2.1 Functional Overview

The ICC Resource Manager is a key component of the PC/SC Workgroup’s architecture.
It is responsible for managing the other ICC-relevant resources within the system and for
supporting controlled access to IFDs and, through them, individual ICCs. The ICC
Resource Manager is assumed to be a system-level component of the architecture. It must
be present and will most likely be provided by the operating system vendor. There should
be only a single ICC Resource Manager within a given system.

The ICC Resource Manager solves three basic problems in managing access to multiple
IFDs and ICCs.

First, it is responsible for identification and tracking of resources. This includes:
• Tracking installed IFDs and making this information accessible to other

applications.
• Tracking known ICC types, along with their associated Service Providers and

supported Interfaces, and making this information accessible to other applications.
• Tracking ICC insertion and removal events to maintain accurate information on

available ICCs within the IFDs.

Second, it is responsible for controlling the allocation of IFD resources (and hence access
to ICCs) across multiple applications. It does this by providing mechanisms for attaching
to specific IFDs in shared or exclusive modes of operations.

Finally, it supports transaction primitives on access to services available within a given
ICC. This is extremely important because current ICCs are single-threaded devices that
often require execution of multiple commands to complete a single function. Transactions
allow multiple commands to be executed without interruption, ensuring that intermediate
state information is not corrupted.

2.2 Implementation Considerations

The ICC Resource Manager will typically be written by the system provider as part of an
implementation of this specification targeted to a given environment (PC plus Operating
System). It will be directly involved in all transactions between ICC-Aware Applications
and ICCs. It is expected to gain direct control over all IFD Handlers, and hence over all
IFDs, on a given system at system boot time. It is then responsible for controlling access
to these resources by PC applications.

The ICC Resource Manager is a privileged component in the sense that it controls access
to physical devices and is involved in the movement of commands and data between an
application and an ICC. Hence, it is critically important that it be designed to ensure a
logical separation between data streams associated with different processes. It should be
implemented in a manner that maintains the same degree of security and protection
afforded by the base Operating System. In short, addition of this component to an
environment should not create new vulnerabilities.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 3

2.3 User Interface Elements

In conjunction with the ICC Resource Manager, it is expected that certain User Interface
(UI) elements will be provided. This ensures consistency within a given environment and
avoids duplicative efforts by IFD and/or ICC vendors in defining and implementing this
functionality.

First, the UI for controlling and managing IFD and ICC resources should be provided.
This UI is intended to expose resource management services provided by the ICC
Resource Manager for administrative control purposes. Through this UI, it shall be
possible for the user to:

• Install and/or remove IFDs and ICC type definitions on the system.
• Enumerate installed IFDs and ICC types.
• Control properties associated with the IFDs:

• User-defined “friendly” names
• User-defined IFD “groups”
• Access to IFD configuration tools (supplied by the vendor)

• Control properties associated with the ICC types.
• User-defined “friendly” names
• ATR strings and masks used to identify the ICC type
• Associated Service Provider
• Associated Interfaces

Second, the UI should be defined so as to allow the user to resolve potential runtime
resource conflicts. Typically these will involve situations where the ICC Resource
Manager is unable to uniquely determine the ICC type within a given IFD, or multiple
ICC types fit within a given application-supplied set of criteria. In either case, it is likely
the application will request that the user select from among the possible ICC types based
on the ICC he is actually using, or intends to use. This resolution is necessary to ensure
that the application selects the appropriate Service Provider to use.

This UI won’t necessarily be implemented as a part of the ICC Resource Manager. An
implementation as a “common dialog,” or provision of a standard UI template, are both
appropriate mechanisms for making this functionality available to application developers.

2.4 Installation and Configuration

As discussed previously, the ICC Resource Manager plays a key role in defining and
enforcing logical separation between data associated with multiple applications. Hence, it
must be installed with security characteristics commensurate with the role within the
basic platform operating system. The ICC Resource Manager must have security
privileges sufficient to control all IFD Handlers within the system and to restrict access
by ICC Service Providers to specific IFD Handlers. It is highly desirable that it be
installed in a manner that requires special privilege (for example, “administrator” access)
to install, remove, or modify the executable image and associated data files.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 4

For the ICC Resource Manager to do its job, it must be aware of the available IFD
devices installed in the system. It is expected that each IFD will be introduced to the
Resource Manager as part of the installation process, creating the required entries in the
Resource Manager data base.

Prior to an ICC becoming available through the ICC Resource Manager, it must first be
introduced to the system. This will typically be done through an ICC setup utility
provided by the ICC manufacturer. This utility may come with the ICC on a floppy disk,
or may be available on a Web site, and so on. The setup utility must provide three pieces
of information about the card:

• Its ATR string, and a mask, used as an aid in identifying the ICC
• A reference to the Service Provider associated with this ICC type
• A “friendly name” for the ICC, to be used in identifying the ICC to the user

2.5 Runtime Considerations

The Architecture defined in Part 1 provides several means by which an ICC-Aware
Application or an ICC Service Provider can form a connection to an ICC:

• The Application may access whatever ICC is present within a given IFD. The ICC
Resource Manager provides a service (SCARDCOMM.Connect()) to connect to
whatever ICC resides in a given IFD. This is the simplest form of establishing
communication with an ICC.

• The Application may search for a specific ICC inserted into a given IFD. When an
Application wishes to interact with an ICC, it identifies the ICC by its friendly
name, and specifies a collection of IFDs of interest. The ICC Resource Manager
searches the IFDs for any ICCs matching the specified type(s) and returns status
information to the Application. The ICC Resource Manager never interacts
directly with an ICC beyond obtaining the ATR string; however, it supplies
sufficient information for the Application to be able to walk the user through
locating the ICC. This results in mapping the request to a specific IFD, to which
further I/O is directed.

• The Application may search within a given collection of IFDs for any ICC
supporting a given set of ICC Interfaces. This is similar to the previous case, but
any named ICC that supports all listed interfaces is considered a match.

In attempting to locate an ICC type(s) within a collection of IFDs, there are several
possible outcomes:

• No such IFD(s) is known to the ICC Resource Manger. This is an error condition.
• No such ICC type is known to the ICC Resource Manager. This is an error

condition.
• No matching ICC is currently in any of the target IFDs, and none of the target

IFDs are available to put it in.
• No matching ICC is currently in any of the target IFDs, but the returned subset of

the target IFDs contains ICCs that are not in use, so the user may be prompted to
remove any of them.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 5

• No matching ICC is currently in any of the target IFDs, but the returned subset of
the target IFDs does not contain ICCs, so the user may be prompted to insert the
desired ICC into any of them.

If a matching ICCs is found in the returned subset of the target IFDs, then two
possibilities exist. First, the ICC may resolve uniquely to a known ICC type in which case
the application knows which Service Provider to use in communicating with the ICC..
Second, the ICC may not be resolvable to a single ICC type. In this case, the Application
may apply further filters in an attempt to determine the ICC type, or use the common UI
(see Section 0) to prompt the user to select exactly which ICC is desired.

Note that an IFD may already be opened for exclusive use by another Application, so
access to an IFD containing the ICC of interest is not guaranteed.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 6

3. Functional Description

In this section, we describe the functional interface exposed by the ICC Resource
Manager. This is described in terms of object Classes, and methods on object instances of
those Classes, along with required parameters and expected return values. The interface
definition is language and system independent. Implementations may alter the naming
conventions and parameters as required to adapt to their environment. For example, some
implementations in C may wish to use “pointer” data types for some parameters. Such
implementation-level decisions are consistent with the intent of this specification
provided that the required functionality is supported.

Note that the interface definitions use terminology that reflects common usage. For
example, ICCs are generally referred to as “cards” and related constants are prefixed by
“SCARD” (short for smart card). IFDs are referred to as “readers”. This is a somewhat
arbitrary decision, but was motivated by the desire to minimize potential symbol conflicts
with deployed API functions. These conflicts are more likely if simple 3-letter acronyms,
such as “ICC” are used.

3.1 Syntax

The syntax used in describing the ICC Resource Manager interface is based on common
procedural language constructs. Data types are described in terms of pseudo types similar
to C-language types, due to its widespread use. The following describes specific
conventions and predefined values used in this document.

3.1.1 Data Types

The following data types are used in defining the Resource Manager interface:
• BYTE == unsigned char, an 8-bit value
• USHORT == unsigned short, a 16-bit value
• BOOL == short, signed 16-bit value
• DWORD == unsigned long, a 32-bit value
• STR == char array (string)
• GUID == unsigned char[16], a 128-bit unique identifier
• RESPONSECODE == long , signed 32-bit value
• HANDLE == a 32-bit value
• VOID == unspecified data type whose interpretation is context dependent

Objects which are handling arrays of the basic data types are indicated by “[]”. Those
objects in general provide methods to query the length of the included array. For example,
“BYTE[]” indicates an object which includes an array of BYTE values of unspecified
length. “BYTE[4]” indicates an object with an array of BYTE values with the length four.
The goal behind this was to give the possibility to use this specification also for
programming languages which are handling data generally as objects like Java.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 7

Data structures are indicated using the “structure” type definition. The following defines a
data structure consisting of a BYTE and DWORD value, which is referenced using the
SAMPLE_STRUCT identifier.

structure {
 BYTE ByteValue

DWORD DwordValue
} SAMPLE_STRUCT;

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 8

3.1.2 Calling Conventions

The interface to the ICC Resource Manager is defined in terms of methods associated
with the exposed objects. Methods are invoked by referencing a named method within the
context of an object instance. How the object is referenced is not specified as this may
vary by implementation. Methods require zero or more parameters and return information
using a simple data type and, optionally, output parameters. For example:

RESPONSECODE MethodA(
IN DWORD DwordValue
IN OUT BYTE ByteValue
OUT BYTE OutValue
)

This example defines a method with three parameters that returns a RESPONSECODE
value. It has two input parameters (DwordValue and ByteValue) and returns additional
information in two output parameters (ByteValue and OutValue).

3.1.3 Defined Constants

The following constants are defined. For the purposes of defining the ICC Resource
Manager interface, these are defined by symbol only. It is the responsibility of the
implementers to assign specific manifest constants suitable for use within their
environment. These should all be defined as DWORD quantities.

Parameter Symbol Comments
Access Mode
Flags

 Used to indicate mode of access to
a card.

 SCARD_SHARE_SHARED Application is willing to share
access to card with other
applications.

 SCARD_SHARE_EXCLUSIV
E

Application requires exclusive
access to the card.

 SCARD_DIRECT Application requires connection to
reader whether or not card is
present. Implies exclusive access.

Protocol
Identifier

 These define the protocols used in
communication with the card.
These must be defined such that a
protocol maps to a specific bit
position so that multiple protocols
may be specified by combining
them with a bitwise OR operation.

 SCARD_PROTOCOL_UNDE

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 9

Parameter Symbol Comments
FINED

 SCARD_PROTOCOL_DEFA
ULT

Provides hint to reader that it
should use default communication
parameters to establish
communication with the card.

 SCARD_PROTOCOL_OPTIM
AL

Provides hint to reader that it
should attempt to negotiate optimal
communications settings with the
card.

 SCARD_PROTOCOL_T0 ISO/IEC 7186 T=0 protocol.
 SCARD_PROTOCOL_T1 ISO/IEC 7816 T=1 protocol.
 SCARD_PROTOCOL_RAW
Card
Disposition

 Used to indicate the desired
disposition of the card following a
Transaction or when a connection is
terminated.

 SCARD_LEAVE_CARD Don’t alter card state.
 SCARD_RESET_CARD Reset the card.
 SCARD_UNPOWER_CARD Unpower and terminate access to

the card.
 SCARD_EJECT_CARD Eject the card from the reader.
 SCARD_CONFISCATE_CAR

D
Used to indicate that a sophisticated
commercial reader should move the
card to the confiscation bin and not
return it to the user.

Card/Reader
State

 Used to indicate the state of the
card in the reader and the current
protocol status of the card. For the
latter, this is used to specify
whether the card is willing to
negotiate a new protocol or not as
defined in ISO/IEC 7816.

 SCARD_ABSENT No card is in the reader.
 SCARD_PRESENT A card is in the reader.
 SCARD_SWALLOWED A card is in the reader and is

properly positioned for operation.
 SCARD_POWERED A card is in the reader and has been

powered.
 SCARD_NEGOTIABLEMOD

E
The card is capable of negotiating a
new protocol setting.

 SCARD_SPECIFICMODE The card is in a specific protocol
mode and a new protocol may not

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 10

Parameter Symbol Comments
be negotiated.

Context Scope Used to designate the scope of
access desired within a given
Resource Manager communication
context.

 SCARD_SCOPE_USER Operate within the user’s scope.
 SCARD_SCOPE_TERMINAL Operate within the scope of a

terminal.
 SCARD_SCOPE_SYSTEM Operate within the system-wide

scope.

3.1.4 Response Codes

The following table lists the defined RESPONSECODE data types. For the purposes of
defining the Resource Manager interface, these are defined by symbol only. It is the
responsibility of the implementers to assign specific manifest constants suitable for use
within their environment.

A RESPONSECODE is returned by all methods associated with the ICC Resource
Manager. The returned value provides a primary notification of success or failure at the
attempt to execute the requested operation. These codes do not replace or supplement the
card command response codes defined by ISO/IEC 7816. Those codes are passed through
to the application by the protocol methods.

Symbol Meaning
SCARD_S_SUCCESS No error was encountered.
SCARD_E_INVALID_HANDLE The supplied handle was invalid.
SCARD_E_INVALID_PARAME
TER

One or more of the supplied parameters could not
be properly interpreted.

SCARD_E_INVALID_VALUE One or more of the supplied parameters’ values
could not be properly interpreted.

SCARD_E_CANCELLED The action was cancelled by an
SCARDTRACK::Cancel or
SCARDCOMM::Cancel request

SCARD_E_NO_MEMORY Not enough memory available to complete this
command

SCARD_E_INSUFFICIENT_BUF
FER

The data buffer to receive returned data is too
small for the returned data

SCARD_E_UNKNOWN_READE
R

The specified reader name is not recognized

SCARD_E_TIMEOUT The specified timeout value has expired

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 11

Symbol Meaning
SCARD_E_SHARING_VIOLATI
ON

The ICC cannot be accessed because of other
connections outstanding

SCARD_E_NO_SMARTCARD The operation requires an ICC, but no ICC is
currently in the device

SCARD_E_UNKNOWN_CARD The specified ICC name is not recognized
SCARD_E_PROTO_MISMATCH The requested protocols are incompatible with the

protocol currently in use with the ICC
SCARD_E_NOT_READY The IFD or ICC is not ready to accept commands
SCARD_E_SYSTEM_CANCELL
ED

The action was cancelled by the system,
presumably to log off or shut down

SCARD_E_NOT_TRANSACTED An attempt was made to end a non-existent
transaction

SCARD_E_READER_UNAVAIL
ABLE

The specified IFD is not currently available for
use

SCARD_W_UNSUPPORTED_C
ARD

The reader cannot communicate with the card, due
to ATR configuration conflicts. This error may be
cleared by the SCARDCOMM::Reconnect
service.

SCARD_W_UNRESPONSIVE_C
ARD

The card is not responding to a reset. This error
may be cleared by the SCARDCOMM::Reconnect
service.

SCARD_W_UNPOWERED_CAR
D

Power has been removed from the card, so that
further communication is not possible. This error
may be cleared by the SCARDCOMM::Reconnect
service.

SCARD_W_RESET_CARD The card has been reset, so any shared state
information is invalid. This error may be cleared
by the SCARDCOMM::Reconnect service.

SCARD_W_REMOVED_CARD The ICC has been removed, so that further
communication is not possible

Additional codes may be added in
future revisions

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 12

3.2 Required Services

The following is a generic description of the services supported by the ICC Resource
Manager. The purpose of each service is defined, along with required parameters and
return codes. This description is suitable for implementation in a variety of languages on
a variety of systems.

3.2.1 Class RESOURCEMANAGER

Communication with the ICC Resource Manager may occur only within a well-defined
Context. A RESOURCEMANAGER object provides the methods necessary to create and
manage this Context. This Context may be released at any time. However,
implementations shall automatically release the Context on object destruction if not
previously released.

A Context is referenced by a 32-bit handle, hContext. This handle shall be set to NULL to
indicate the absence of a Context. It shall be an implementation-defined, 32-bit, non-
NULL quantity when referencing a valid Context.

3.2.1.1 Properties

HANDLE hContext // Handle to a communications Context associated with
an
// SCARDMANAGER object instance (see below). Set
to NULL
// on object creation.

3.2.1.2 Methods

RESOURCEMANAGER()
This creates an instance of the RESOURCEMANAGER class and returns a
reference to the calling application. The type of this object reference is
implementation dependent.

~RESOURCEMANAGER ()
This deletes an instance of the RESOURCEMANAGER. If the hContext is
valid, then this method shall call ReleaseContext() prior to destroying the
object.

RESPONSECODE EstablishContext (
IN DWORD Scope, // A scope indicator (see below)
IN DWORD Reserved1, // Reserved for future use to allow privileged

administrative
// programs to act on behalf of another user

IN DWORD Reserved2 // Reserved for future use to allow privileged
administrative
// programs to act on behalf of another terminal

)
Creates Context to be used in subsequent communication with the ICC
Resource Manager. If successful, a handle to the Context is stored in the

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 13

hContext property (32-bit value of type HANDLE) of the SCARDMANAGER
object.
The Scope parameter is intended to allow a caller to designate the “security”
context that this Resource Manager Context operates within. Normally, this is
associated with the user on whose behalf the calling process is running, and
operations will be restricted to devices that the user is allowed to access.
Alternately, one could request the security context appropriate for a specific
terminal or the system as a whole.

RESPONSECODE ReleaseContext()
This method releases the Context associated with the hContext property and
sets hContext to NULL. An error is returned if hContext is invalid.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 14

3.2.2 Class RESOURCEDB

A principal responsibility of the ICC Resource Manager is maintenance of global
information on the ICCSPs, cards, and readers known to the system. It is responsible for
maintaining a database of this information. A RESOURCEDB object provides methods
for managing this database of information including the ability to insert, delete, create
associations between resources, and query the database. This database is considered a
private information repository for the Resource Manager and may be implemented in any
convenient manner. In general, this object would be accessed only by system
administrative routines that manage the addition or removal of resources.

RESOURCEDB is derived from RESOURCEDBQUERY, (described in the next
section,) and inherits its methods. These define the query interface to the resource
database.

3.2.2.1 Properties

private RESOURCEMANAGER resmgr // Reference to a
RESOURCEMANAGER object

3.2.2.2 Methods

RESOURCEDB(
IN RESOURCEMANAGER resmgr
)
This creates an instance of the RESOURCEDB class and returns a reference to
the calling application. An object instance will be created only if a reference to
a valid RESOURCEMANAGER object is provided.

~RESOURCEDB()
This deletes an instance of the RESOURCEDB. The object referenced by the
resmgr property is unaffected.

RESPONSECODE IntroduceReader(
IN STR ReaderName // Friendly name to be associated with the

// reader
IN STR DeviceName // System-specific name of the reader device.

// Should conform to OS-specific naming
// conventions.

)
Adds a new card reader to the Resource Manager database, associating it with
the given ReaderName and a system-specific DeviceName. In general, this
function would be used by the set-up program for the associated reader device
driver. Any attempts to define duplicate reader names are detected and result
in an error.

RESPONSECODE ForgetReader(
IN STR ReaderName // Friendly name associated with reader
)

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 15

Removes the reader from the Resource Manager database. The reader is also
removed from any groups to which it is currently assigned. If the reader isn’t
found, this returns an error.

RESPONSECODE IntroduceReaderGroup(
IN STR GroupName // Group name to be added to the Resource Manager

database
)
Supports defining a new card reader group within the Resource Manager
database. Any attempts to define duplicate group names are detected and result
in an error. This function is expected to be called only from system
administrative routines.

RESPONSECODE ForgetReaderGroup(
IN STR GroupName // Group name to be removed from the Resource

Manager
// database

)
Supports removing a card reader group within the resource database. All
readers within the group are removed from the group first, and then the group
removed. This function is expected to be called only from system
administrative routines.

RESPONSECODE AddReaderToGroup(
IN STR ReaderName // Name of Reader
IN STR GroupName // Group name to which Reader is to be added
)
Assigns a reader to a reader group. If the group or the reader isn’t defined in
the Resource Manager database, this returns an error.

RESPONSECODE RemoveReaderFromGroup(
IN STR ReaderName // Name of Reader
IN STR GroupName // Group name from which Reader is to be removed
)
Removes a reader from a group. If the reader or group isn’t defined in the
Resource Manager database, this returns and error.

RESPONSECODE IntroduceCardType(
IN STR CardName // Friendly name for the card being introduced
IN BYTE[] ATRRefVal // ATR reference value to match in determining card

type
IN BYTE[] ATRMask // Mask which is logically AND’d with an card

ATR prior to
// comparison with the ATR reference value

IN BYTE[] ProviderId // Unique identifier for the primary service provider,
encoding
// is system specific

IN GUID[] Interfaces // List of unique identifiers for the card Interfaces
supported
// by the card

)
Adds a new card type to the Resource Manager database along with an
identifying ATR reference value and associated Mask; a reference to the
ICCSP(s); and associated card interface identifiers. This service checks for

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 16

duplicate card names and returns an error if a duplicate is detected. In general,
this function would be used by the set-up program for the associated ICCSP.

RESPONSECODE ForgetCardType(
IN STR CardName // Friendly name for the card to be removed
)
Removes information on a specific card type from the Resource Manager
database. This service does not remove the associated ICCSP. If the
CardName is not known within the Resource Manager database, this returns
an error.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 17

3.2.3 Class RESOURCEQUERY

A RESOURCEQUERY object supports retrieval of resource information maintained by
the ICC Resource Manager including groups, readers, and card types. For card types,
information on associated service providers (ICCSPs) and supported interfaces may also
be retrieved. This information is based on the contents of the Resource Manager database
and is guaranteed to be correct only at the time the query is made.

3.2.3.1 Properties

private RESOURCEMANAGER resmgr // Reference to a
RESOURCEMANAGER object

3.2.3.2 Methods

RESOURCEQUERY(
IN RESOURCEMANAGER resmgr
)
This creates an instance of the RESOURCEQUERY class and returns a
reference to the calling application. An object instance will be created only if a
reference to a valid RESOURCEMANAGER object is provided.

~RESOURCEQUERY()
This deletes an instance of the RESOURCEQUERY. The object referenced by
the resmgr property is unaffected.

RESPONSECODE ListReaderGroups(
OUT STR[] Groups // Array of strings containing the Group names
)
Returns a list of the group names known to the system, that is, defined in the
Resource Manager database.

RESPONSECODE ListReaders(
IN STR[] Groups // Array of strings containing Group names of

interest
OUT STR[] Readers // Array of strings containing Readers within the

Groups
)
Returns a list of the readers assigned to one or more groups. Any invalid group
names are ignored.

RESPONSECODE ListCardTypes(
IN BYTE[] ATR // ATR string to compare against known card types;

maybe
// NULL

IN GUID[] Interfaces // Array of GUIDs associated with the desired
interfaces

OUT STR[] Cards // Array of strings containing Card Types
)
Returns a list of card types that match the supplied ATR string or interface
list. The parameter ATR may be NULL and/or the interface list may be empty.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 18

In this event all cards match those criteria. Matching for the ATR is
determined by examining the Resource Manager database record for each card
type and performing a BYTE-wise comparison of the card type ATR against
the supplied ATR AND’d with the card type mask value. If the supplied ATR is
the NULL string, then all card types will match. A card matching the interface
list must support all supplied Interfaces.

RESPONSECODE GetProviderId(
IN STR CardName // Friendly name for a Card Type
OUT BYTE[] ProviderId // Reference to the Primary SP(s)
)
Returns a reference to the Primary ICCSP associated with a given card type. If
the CardName is not known within the Resource Manager database, this
returns an error.

RESPONSECODE ListInterfaces(
IN STR CardName // Friendly name for a Card Type
OUT GUID[] Interfaces // Array of GUIDs associated with the supported

Interfaces
)
Returns a list of the GUIDs associated with the card Interfaces supported by a
given card type. If the CardName is not known within the Resource Manager
database, this returns an error.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 19

3.2.4 Class SCARDTRACK

This object encapsulates functionality that supports determination of the presence or
absence of specific Card Types within the available Readers. This information is made
available based on selection criteria provided by the calling application.

The SCARDTRACK methods use the following common data structure as a parameter:

structure {
STR Reader; // reader name
VOID UserData; // user defined data
DWORD CurrentState; // current state of reader at time of call
DWORD EventState; // state of reader after state change

} SCARD_READERSTATE;

Where the fields have the following meanings:
Reader Supplies the friendly name of the name of the reader being

monitored.
UserData This field is reserved for arbitrary application-supplied data.
CurrentState This field supplies the current state of the reader, based on

the calling application’s knowledge. This field can take on any of the
following values, or in combination, as a bit mask:
SCARD_STATE_UNAWARE The application is unaware of the current

state, and would like to know. The use of this value results in an
immediate return from state transition-monitoring services. This is
represented by all bits set to zero.

SCARD_STATE_IGNORE The application is not interested in this reader,
and it should not be considered during monitoring operations. If this
bit value is set, all other bits are ignored.

SCARD_STATE_UNAVAILABLE The application believes that this
reader is not available for use. If this bit is set, then all the following
bits are ignored.

SCARD_STATE_EMPTY The application believes that there is not a card
in the reader. If this bit is set, all the following bits are ignored.

SCARD_STATE_PRESENT The application believes that there is a card
in the reader.

SCARD_STATE_ATRMATCH The application believes that there is a card
in the reader with an ATR matching one of the target cards. If this bit
is set, SCARD_STATE_PRESENT is assumed.

SCARD_STATE_EXCLUSIVE The application believes that the card in
the reader is allocated for exclusive use by another application. If this
bit is set, SCARD_STATE_PRESENT is assumed.

SCARD_STATE_INUSE The application believes that the card in the
reader is in use by one or more other applications, but may be
connected to in shared mode. If this bit is set,
SCARD_STATE_PRESENT is assumed.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 20

EventState This field receives the current state of the reader, as
determined by the Resource Manager. This field can take on any of the
following values, or in combination, as a bit mask:
SCARD_STATE_IGNORE The application requested that this reader be

ignored. No other bits will be set.
SCARD_STATE_CHANGED This implies that there is a difference

between the state input by the calling application, and the current state.
When this bit is set, the application may assume a significant state
change has occurred on this reader.

SCARD_STATE_UNKNOWN This implies that the given reader name is
not recognized by the Resource Manager. If this bit is set, then
SCARD_STATE_CHANGED will also be set.

SCARD_STATE_UNAVAILABLE This implies that the actual state of this
reader is not available. If this bit is set, then all the following bits are
clear.

SCARD_STATE_EMPTY This implies that there is no card in the reader.
If this bit is set, all the following bits will be clear.

SCARD_STATE_PRESENT This implies that there is a card in the reader.
SCARD_STATE_ATRMATCH This implies that there is a card in the

reader with an ATR matching one of the target cards. If this bit is set,
SCARD_STATE_PRESENT will also be set. This bit is returned only
by the LocateCard() method.

SCARD_STATE_EXCLUSIVE This implies that the card in the reader is
allocated for exclusive use by another application. If this bit is set,
SCARD_STATE_PRESENT will also be set.

SCARD_STATE_INUSE This implies that the card in the reader is in use
by one or more other applications, but may be connected to in shared
mode. If this bit is set, SCARD_STATE_PRESENT will also be set.

3.2.4.1 Properties

private RESOURCEMANAGER resmgr // Reference to a
RESOURCEMANAGER object

3.2.4.2 Methods

SCARDTRACK(
IN RESOURCEMANAGER resmgr
)
This creates an instance of the SCARDTRACK class and returns a reference
to the calling application. An object instance will be created only if a reference
to a valid RESOURCEMANAGER object is provided..

~SCARDTRACK()
This deletes an instance of SCARDTRACK. The object referenced by the
resmgr property is unaffected.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 21

RESPONSECODE LocateCards(
IN STR[] Cards // Array of strings giving the names of the Card

Types of
// interest

IN OUT SCARD_READERSTATE[] ReaderStates //
Array of READERSTATE structures for
// readers of interest

)
Returns immediately with information concerning the status of the reader(s)
specified in the SCARD_READERSTATE data structures. The value of the
EventState parameter for each reader indicates whether a card matching one of
the card types indicated in the first parameter is present. To block pending
insertion of the desired card type(s), use the GetStatusChange() method.
Unknown card types are ignored. If an unknown reader is specified, then an
error is returned.

RESPONSECODE GetStatusChange(
IN OUT SCARD_READERSTATE[] ReaderStates //

Array of READERSTATE structures for
// readers of interest

IN DWORD Timeout // Time-out value in milliseconds
)
The method will block until there is a status change in one of the Readers
specified in the SCARD_READERSTATE data structures or the specified time-
out period expires. A Timeout value of INFINITE (which is defined system
dependent) is used to indicate that the calling application is willing to wait
forever. A Timeout value of zero is used to indicate that the method should
return immediately. Once this returns, the application can determine which
readers have undergone a state change, and the new state, by examining the
SCARD_READERSTATE structures. If an unknown reader is specified, then
an error is returned.
Note that this method will provide information on when cards are removed or
inserted into one of the specified readers. It does not indicate anything about
card types that may be in a specific reader. This behavior ensures that the
calling application is made aware of all changes across the readers of interest,
making it possible to present appropriate UI.

RESPONSECODE Cancel()
The method provides a means to terminate outstanding actions (blocked
requests) within this Object context. Within this version of the interface, only
the GetStatusChange() method may be cancelled.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 22

3.2.5 Class SCARDCOMM

This object encapsulates a communication interface to a specific card or reader. It
provides methods for managing the connections, controlling transactions, sending and
receiving commands, and determining card state information.

The command interfaces are designed to simplify interaction with a card using the
protocols required by this specification. In particular, this document describes the usage
of the protocols ISO/IEC T=0 and T=1. In addition, a “raw” mode is supported, which
may be used to support arbitrary data exchange protocols (such as T=14) for special-
purpose requirements.

3.2.5.1 Properties

private RESOURCEMANAGER resmgr // Reference to a RESOURCEMANAGER
object

private HANDLE hCard // Handle to a Context associated with communication
to a specific card and/or Reader. Set to NULL on object
creation. This context is established using the
Connect()method and destroyed using Disconnect().

3.2.5.2 Methods

SCARDCOMM(
RESOURCEMANAGER resmgr
)
This creates an instance of the SCARDCOMM class and returns a reference to
the calling application. A valid RESOURCEMANAGER object reference
must be supplied upon creation. Subsequent connections to a specific card or
reader require a valid Context.

~SCARDCOMM()
This deletes an instance of SCARDCOMM. If the hCard is valid, then this
method shall call Disconnect() prior to destroying the object. The object
referenced by resmgr is not affected by this operation.

RESPONSECODE Connect(
IN STR ReaderName // Friendly name for a Reader
IN DWORD Flags // Desired access mode information
IN DWORD PreferredProtocols // Card communications protocols that may

be used
OUT DWORD ActiveProtocol // Protocol actually in use
)
Opens a connection to the card located in the reader identified by the
ReaderName parameter. This connection is established in the context of an
existing SCARDMANAGER object communication context pointed to by the
hContext property. If hContext is not valid, then an error is returned.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 23

The Flags parameter is used to indicate three things. First, it indicates whether
the connection is opened for shared or exclusive access. If the requested mode
is unavailable, an error is returned. Second, it indicates whether the caller
desires a “direct” connection to the reader. Direct mode implies that a
connection will be established, even if a card is not present. Finally, it is a hint
to the reader indicating whether it should use default reader-card
communication settings to attempt to optimize those settings if the card is still
in negotiable mode as defined by ISO/IEC 7816.
Communication with the card will be initialized only for one of the valid
protocols identified by the PreferredProtocol bit mask. If none of the
requested protocols is available, then an error is returned. The actual protocol
in use is returned in the ActiveProtocol parameter.
If this method is successful, a communication context between the application
and the card is created. A reference to this context is set in the object’s hCard
property. This is considered a “general” context and may be used for all
methods in this Object. If this method fails, hCard will be NULL.

RESPONSECODE Reconnect(
IN DWORD Flags // desired access mode
IN DWORD PreferredProtocols // card communications protocols which may

be used
IN DWORD Initialization // Specify card initialization to be performed
OUT DWORD ActiveProtocol // protocol actually in use
)
Reopens a connection to the card associated with a valid context referenced by
the hCard property (must have been created set by calling the Connect()
method). If hCard is invalid, then an error is returned.
This method may be used to clear an error condition preventing access to the
card. For example, if the card is reset by another application, then further
attempts to execute methods against that card will fail with a warning being
returned. This method allows the application to acknowledge the reset
notification and continue operation.
The Initialization parameter allows to specify a desired action on the card as a
side effect of the Reconnect. This may include performing a warm or cold
reset by specifying either the SCARD_RESET_CARD or
SCARD_UNPOWER_CARD standard disposition codes. This parameter is
ignored if the Reconnect is applied to a connection that would normally return
one of the return codes SCARD_W_RESET_CARD,
SCARD_W_REMOVED_CARD and may be others dependent of the target
platform. This must be done to prevent race conditions in applications.
It may also use this method to change the current access modes via the Flags
parameter.

RESPONSECODE Disconnect(
IN DWORD Disposition // Desired Card disposition action
)
Disconnects from the card associated with the hCard property. If hCard is
invalid, then an error is returned. The Disposition parameter indicates the
desired action to perform on disconnect and includes the ability to:

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 24

• Leave the Card
• Reset the card.
• Power down and close the card.
• Eject the card.
• Confiscate the card
Any application may reset the card, even in shared access mode.

RESPONSECODE Status(
OUT STR[] Reader // Friendly name of the connected reader
OUT DWORD State // Current status the connection
OUT DWORD ActiveProtocol // protocol actually in use
OUT BYTE Atr[] // ATR data buffer
)
Returns the status from the connection associated with the hCard property. If
hCard is invalid, then an error is returned. The parameter Reader returns the
friendly names of the connected reader. The State parameter returns the
current reader state. If there is a card inserted, the parameter ActiveProtocol
returns the negotiated communication protocol and the parameter Atr returns
the ATR string from the card.
The State parameter can take on any of the following values:

SCARD_UNKNOWN - This value implies the driver is unaware of the
current state of the reader. This also implies that the reader handler is
not able to communicate with the corresponding reader.

SCARD_ABSENT - This value implies there is no card in the reader.
SCARD_PRESENT - This value implies there is a card present in the

reader, but that it has not been moved into position for use.
SCARD_SWALLOWED - This value implies there is a card in the reader in

position for use. The card is not powered.
SCARD_POWERED - This value implies there is power being provided to

the card, but the reader handler is unaware of the mode of the card.
SCARD_NEGOTIABLE - This value implies the card has been reset and

is awaiting PTS negotiation.
SCARD_SPECIFIC - This value implies the card has been reset and

specific communication protocols have been established.

RESPONSECODE BeginTransaction()
This method initiates a logical transaction against the card associated with the
context referenced by hCard. If hCard is invalid, this method will return an
error. If successful, this blocks other applications from accessing the card,
allowing the calling application to perform a sequence of operations against
the card with assurance that any intermediate state information will remain
valid.
At present, only a single outstanding transaction may exist for a given card. If
a transaction is underway when an application calls this service, then this

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 25

method will block pending completion of the prior transaction(s). Application
requests for transactions are serviced on a first-in, first-out basis. The
application may call the Cancel() method to terminate a pending request.

RESPONSECODE EndTransaction(
IN DWORD Disposition // Desired Card disposition action
)
This method ends a logical Transaction sequence against the card associated
with the context referenced by hCard. If hCard is invalid, this method will
return an error. If successful, this frees the transaction and the next pending
transaction, if any, is serviced.
Upon termination, the action indicated by Disposition is performed if possible.
This may be:
• Leave the card
• Reset the card.
• Power down and close the card.
• Eject the card.
Any application may reset the card, even in shared access mode. Power down
and eject actions will succeed only if the application has exclusive access to
the card.

RESPONSECODE Cancel()
The method provides a means to terminate outstanding actions (blocked
requests) within this object context. Within this version of the interface, only
the BeginTransaction() method may be cancelled.

RESPONSECODE Transmit(
IN SCARD_IO_HEADER SendPci // Send protocol structure
IN BYTE[] SendBuffer // Data buffer for send data
IN OUT SCARD_IO_HEADER RecvPci // Receive

protocol structure
IN OUT BYTE[] RecvBuffer // Data buffer for receive data
OUT DWORD RecvLength // Length of received data
)
This method sends data to the card, associated with the context referenced by
hCard and expects to receive data back from the card. The protocol which
should be used therefore is encoded in the SCARD_IO_HEADER structure.
The data buffer for the returned data must be adequate to hold the maximum
amount of data that may be returned. This service may return fewer than the
expected number of bytes if the InterByte or InterBlock time-outs are
exceeded. The actual number of bytes returned is indicated by the RecvLength
parameter.
The protocol type and other required information is passed to the Transmit()
method using an SCARD_IO_HEADER structure. The definition of this
structure depends on the protocol type, which is always encoded at the
beginning of the structure.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 26

The SCARD_IO_HEADER structure is defined as:

structure {
DWORD Protocol;
DWORD Length;
} SCARD_IO_HEADER;

Where:

Protocol - Identifies the protocol in use based on the defined protocol
constants (see 0).

Length - Contains the length of the tSCARD_IO_HEADER structure.

RESPONSECODE Control(
IN DWORD ControlCode // Vendor-defined control code
IN BYTE[] InBuffer // Input data buffer
IN OUT BYTE[] OutBuffer // Output data buffer
OUT DWORD OutBufferLength // Length of data in output data buffer
)
This method supports direct communication with the Reader device. Its
primary intent is to provide a mechanism to communicate with vendor-defined
features. It is the responsibility of the vendor to define ControlCode values
and input/output data associated with these features.
The ControlCode, InBuffer data and OutBuffer are send directly to the reader
device driver. The response from the device driver is returned in OutBuffer
and the valid data size indicated in OutBufferLength.

RESPONSECODE GetReaderCapabilities (
IN OUT DWORD Tag // Value of tag associated with

attribute to retrieve
OUT BYTE[] Buffer // Data returned
)
This method returns a reader attribute value associated with the supplied Tag
parameter (see Part 3 for defined values). If the tag is unknown, an error is
returned.

RESPONSECODE SetReaderCapabilities (
IN DWORD Tag // Value of tag associated with attribute to retrieve
IN BYTE[] Buffer // Data returned
)
This method sets a reader attribute value. The attribute to be set is identified
by the Tag parameter (see Part 3 for defined values) and the value to set is
passed in Buffer. If the attribute does not exist or cannot be set, or the
provided value is illegal an error is returned.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 5. ICC Resource Manager Definition

 1996, 1997 – Bull CP8, Gemplus, Hawlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun MicroSystems, Toshiba and Verifone. All Rights Reserved. Page 27

Appendix A. Reference Implementation for Microsoft Windows

This chapter was removed from this document. For reference purposes, please refer the
corresponding document included in the Microsoft Smart Card SDK/DDK
(http://www.microsoft.com/smartcard/) .

http://www.microsoft.com/smartcard/

